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The steady axisymmetrical wing-tip vortex is studied in this paper by means of 
asymptotic methods within the limit of high Reynolds numbers. The smooth 
regrouping of the vortex under the action of viscous forces is described by a quasi- 
cylindrical approximation. The solutions of the quasi-cylindrical approximation are 
thoroughly analysed numerically and it is shown that a saddle-point bifurcation 
appears at certain critical values of circulation. At these values the solution may be 
continued in two ways: as a supercritical branch which approaches the Batchelor limit 
far downstream; and a subcritical one, which passes the second, nodal-point 
bifurcation. The parabolic quasi-cylindrical equations past this point allow the 
downstream disturbances to propagate upstream, like for example, boundary-layer 
equations in the regime of strong hypersonic interaction. The flow past the second 
bifurcation point was studied numerically and it was shown that solutions of the quasi- 
cylindrical approximation with large reversed-flow regions exist. An asymptotic 
expansion of such solutions far downstream was constructed, and it turned out that the 
reversed-flow region expands exponentially. This process is halted by elliptical effects 
in the external flow. An asymptotic theory of large reversed-flow regions is suggested 
including viscosity and elliptical effects. Numerical solutions for unbounded vortex 
breakdown parabolically expanding far downstream are presented. Then the general 
asymptotic problem statement which describes the flow near the bifurcation points is 
used to study the asymptotic solutions near the first bifurcation point. The problem is 
investigated numerically and two kinds of solution, which may be treated as 
transcritical jumps and marginal vortex breakdown, are found and discussed. 

1. Introduction 
Vortex breakdown was first observed by Peckham & Atkinson (1957) in their 

experiments with concentrated vortex cores shed by the leading edge of the Gothic 
wing. A stagnation point appears suddenly in the vortex core as the angle of attack 
increases and the flow downstream immediately becomes unsteady and irregular. The 
lift drops drastically and an asymmetrical rolling moment appears which may result in 
a loss of control. Vortex breakdown is a phenomenon which prevents aircraft with 
moderately swept wings from operating at high angles of attack. For this reason much 
experimental engineering research is carried out on vortex breakdown near the wings 
of aircraft, with the aim of predicting its occurrence and its influence on the 
performance of an aircraft. 

Vortex breakdown may also be responsible for the transmission of energy from large 
to small scales in turbulent flows. The visualization of turbulent flows obtained by 
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means of direct numerical simulation shows that the bursting of the strong longitudinal 
vortices formed near the wall is like vortexibreakdown and effectively pumps energy to 
small-scale motion. 

The vortex structure near the wing is three-dimensional and too complicated for 
detailed ‘clean ’ experimental and theoretical studies. Most of the theoretical and 
‘clean’ experimental works deal with vortices in tubes or isolated vortices. 
Comprehensive reviews of these works have been done by Hall (1972) and Leibovich 
(1978, 1984). This paper reviews and discusses only those studies which concern our 
work directly. 

In Leibovich & Kribus (1990), a general approach to vortex breakdown studies was 
suggested. The process was divided into three elements which are studied separately 
and then recombined. The first element is the large-amplitude axially symmetric waves 
in vortical flows, and this element was investigated in the paper just mentioned. The 
second is loss of stability to asymmetric perturbations. The third element involves 
effects engendered by axial inhomogeneity caused by the global flow field. The former 
two concern properties of the waves, while the third primarily concerns the properties 
of the wave guide. 

We agree that these elements are the most important in comprehending the 
phenomenon, although we see many problems in their recombination. For this reason 
our approach to the study of vortex breakdown is different. 

For this paper we chose the simplest but quite realistic flow in which vortex 
breakdown appears and we performed an asymptotic study of the flow at the limit of 
high Reynolds number. The analysis and synthesis are closely connected in the 
asymptotic study. Real elements of the phenomenon may be extracted from these 
studies, i.e. mathematical statements of the problems in the different regions emerging 
at the limit. This work contributes to a better understanding of vortex breakdown and 
allows one to correctly formulate mathematical statements of the problems for the next 
stage - direct numerical simulation of vortex breakdown. 

As noted by Hafez et al. (1987): ‘Perhaps the single most important contribution to 
the study of the vortex breakdown was made by Harvey (1 962), who isolated the vortex 
from the wing.. . ’. In our work we also isolate the vortex from the tube and study the 
single trailing wing-tip vortex. Morton (1969) pointed out that single unbounded 
vortices of this type cannot be generated because they would require infinite kinetic 
energy and would also have infinite angular momentum. Therefore, such vortices do 
not actually occur singly but in pairs. For these vortices in pairs, with equal and 
opposite circulation, the kinetic energy is finite and the angular momentum is zero. We 
study the flow far enough from the wing but close to one of the vortices so that effects 
of the second are negligible. 

Trailing wing-tip vortices are well-known because often, owing to condensation of 
vapour, they are highly visible in the sky as very long tails at the rear of the plane. The 
study of their breakdown is also a problem of practical interest and concern since these 
vortices behind large aircraft represent substantial danger for other aircraft. There is 
particular concern in airport zones where many large aircraft are in continuous 
movement simultaneously. 

Theoretical studies of trailing tip vortices include those of Batchelor (1 964), 
Gartshore (1963), Mager (1972), Lessen, Singh & Paillet (1974) and Lessen & Paillet 
(1974). In Batchelor’s (1964) work the correct asymptotic expansion for a dissipating 
trailing vortex far from the aircraft was obtained. Gartshore (1963) studied the quasi- 
cylindrical approximation for a trailing vortex using an integral approach. He found 
that a singularity may appear in the course of integration of the equations and the 
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solution cannot be continued beyond the singular point. He suggested that these 
singularities may be mathematical indications of vortex breakdown. This work was 
continued by Mager (1972) who also used the integral approach to solve equations of 
the quasi-cylindrical approximation. He made an attempt to connect the solutions 
obtained with the concept of the breakdown as a supercritical-subcritical jump 
suggested by Benjamin (1962). The inviscid and viscous stability of a vortex which has 
an asymptotic structure obtained by Batchelor (1964) was studied in the papers of 
Lessen et  at. (1974) and Lessen & Paillet (1974). We are not aware of any current 
asymptotic studies of the trailing vortex breakdown at the limit of high Reynolds 
numbers discussed here. 

The traditional objection to such an approach is that the real flow at high Reynolds 
number is turbulent. Nevertheless, we believe that understanding the vortex breakdown 
mechanisms obtained in asymptotic studies of laminar flow is helpful in dealing with 
turbulent flow too. 

The plan of the paper is as follows. The general formulation of the problem and its 
statement at the limit of the quasi-cylindrical approximation are described in $2. The 
probe function is constructed which indicates remoteness of the vortex state from 
critical, bifurcation conditions. Two integral invariants are given and the asymptotic 
expansion obtained by Batchelor (1964) is completed by additional terms depending on 
the invariant of angular momentum deficiency. A numerical study of the solutions in 
the quasi-cylindrical approximation is performed; two types of bifurcation points are 
found. An unexpected result is obtained : the solutions pass the second bifurcation 
point regularly. The connection between singularity, bifurcations and the condition of 
criticality is discussed. 

An asymptotic theory of the flow near the bifurcation points is formulated in 93. 
Governing equations are obtained and all possible types of bifurcations are indicated. 
Calculations are performed to understand which types were observed in previous 
numerical solutions. It was found that the first bifurcation has a saddle-point structure, 
while the second has a nodal-point structure. This means that the parabolic equations 
of the quasi-cylindrical approximation past the second bifurcation point allow the 
downstream disturbances to propagate upstream. 

The solutions of the quasi-cylindrical approximation past the second bifurcation 
point are studied numerically in $4. It is shown that solutions with large reversed-flow 
regions exist. Then the asymptotic expansion of the solution far downstream is 
constructed. It turns out that the reserved-flow region expands exponentially. This 
process is halted by elliptical effects in the external flow. 

The asymptotic theory of the large reversed-flow regions which include the action of 
viscosity and elliptical effects is formulated in $5.  Governing equations and scaling are 
derived and numerical solutions for unbounded vortex breakdown parabolically 
expanding far downstream are obtained. 

In 56 we return to the asymptotic equations describing the flow near the first 
bifurcation point, which were obtained in $ 3 .  The problem is studied numerically and 
two types of solutions, which can respectively be treated as transcritical jumps and 
marginal vortex breakdown, are found and discussed. 
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2. Smooth, singular and bifurcating solutions of the quasi-cylindrical 
approximation 

2.1. Problem formulation 
We shall consider a steady axisymmetrical trailing wing-tip vortex which is surrounded 
by infinite potential flow with uniform velocity u,, and circulation g,, far from the 
vortex. We shall introduce a cylindrical coordinated system (x, ,  rd) with the x,-axis 
directed along the vortex axis in the downstream direction. The axial, radial and 
azimuthal components of velocity and pressure are ud, u,, wd, p d  respectively. The fluid 
is considered to be incompressible with constant density pd (index d denotes 
dimensional values). 

First, we shall investigate the slow regrouping of the internal vortex structure due to 
the effects of viscous forces up to the state described by the expansions of Batchelor 
( 1 964). 

If the derivative drd/dxd,  where rd is the radius of the vortex core, is small the main 
approximation for the velocities in the potential flow is (Goldstein 1960, pp. 181-195) 

(2.1 b, c) 

Here Sd is the distribution of sources along the axis which is determined by the form 
of the vortex radius variation. It is supposed that the third derivative of the function 
S,  decays at infinity rapidly enough to provide convergence of the integral. 

If we suppose that only viscous forces change the vortex core we can find the 
asymptotic expansion of the functions inside the core in the form 

(2.2 a)  

(2.2b) 

(2.24 

(2.2 d )  

where x = Exd/rd; y = B(rd/rOd)2; 1 E = vd/u,d rod;  vd is the coefficient of viscosity; rod is 
the characteristic radius of the vortex core at the initial position; and p* = ~ ~ l n ( l / s ) .  
Second-order terms of O&) are caused by interaction of the vortex with the external 
potential flow. 

Taking the limit E + O ;  x,y = 0(1) in the Navier-Stokes equations, we obtain the 
quasi-cylindrical approximation (Gartshore 1963 ; Hall 1967) 

(2.3 a)  

(2.3 b) 

( 2 . 3 ~ ~  d )  
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System (2.3) is nonlinear parabolic, just like the system of boundary-layer equations. 
Generally, natural boundary conditions for (2.3) are : 

x 2 0 ,  y > o ;  (2.4a, b) 
(2.4c, d )  4 0 ,  Y) = u“(u>, d o ,  u) = g“Y) ; 

U(X,Y) = 1 + O(exp), g(x,.Y) = g, + O(exp), (2.4e,f) 
p =pm+O(y-l) as y+co; (2.4g) 

g(x, 0) = 0, 4x3 0) = 0, l4X, 011 < 00, (2.4 h-j) 

where O(exp) are the terms which decay exponentially as y + m ;  g,,p, are constants. 
The last condition means that axial velocity is finite at y = 0. 

System (2.3) may also be represented in the form ‘ resolved relatively x-derivatives’. 
(2.5a) v“- R,(u, g) v = D,(u, g), 

(2.5b, c) 

(2.5d, e) 

where the prime denotes derivatives in the radial direction. 
This form is suitable for analysis and for numerical calculations of vortices without 

stagnation points (u  > 0). If the u , g  profiles are known at some position x = xo the 
functions R,, D, may be calculated and the function u may be obtained by solving the 
non-homogeneous linear equations (2.5a) with boundary conditions v(x,, 0) = 0, u’(xo, 
00) = 0. Then the u,g profiles may be continued further using (2.5b, c). Equation 
(2.1 a) cannot be solved if the boundary-value problem for the related homogeneous 
equation 

(2.6a, b) 
has a solution. It was shown by Trigub (1985a) that in this case the solution of (2.5) 
is singular at the point x, : v - au/ax - agg/ax - O((xO - x)”~);  and cannot be continued 
beyond the point x,. The only exception is when the additional solvability condition 

is satisfied. In this case the point x = x, is a bifurcation point for problem (2.5) and 
generally there are two regular solutions of (2.5) which originate from this point. 

More complex singularities and bifurcations may appear if additional conditions are 
satisfied for the u and g profiles. The situations were also analysed by Trigub (1985a) 
but we are not concerned with them in the present work since only the most general 
singularities and bifurcations (mentioned above) were encountered in our calculations. 

Two conservation laws found by Gartshore (1963) are satisfied for problems (2.3) 
and (2.4). In Gartshore (1963) and Mager (197 1, 1972), the integration was performed 
up to the finite radius of the vortex core so that the flow force-deficiency conservation 
law contained this radius. We obtained this law in another form independent of that 
artificial value. Integration of (2.3) using boundary conditions (2.4) yields after 
considerable manipulation 

Jr(u(1 -u)-$g’lny)dy = C,, (2.8a) 

(2.8b) 
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where C, and C2 are constants which are determined by initial profiles uo(y),go(y). 
Using Mager’s (1972) definitions, C, is called the invariant initial value of the flux of 
the angular momentum deficiency and C2 the invariant flow force deficiency. 

It was shown by Batchelor (1964) that an arbitrary constant which appears in his 
asymptotic expansion of a solution of (2.3) and (2.4) far downstream depends on the 
invariant C, only. Therefore, another arbitrary constant must exist in the expansion 
which depends on C,. We extended the expansions and found terms which contain this 
invariant. The expansions may be represented as 

(2 .9~)  

where 7 = y/2x, 

We use O*(xa) to denote all terms which have the form O(x”(lnx)B), for all a,/?. 
The arbitrary constants a, b may be obtained if invariants C,, C, are known: 

The second and third terms in the expansion of g, (2.9b), were not considered by 
Batchelor (1964). 

2.2. Numerical solution 
The initial conditions were chosen from the two-parameter class of velocity and 
circulation profiles : 

uo = 1 - (1 -a) e-y, go = g,( 1 - e-y). (2.10) 

The velocity and circulation distributions upstream from the position of a vortex 
breakdown (Leibovich 1978) are approximated well by such profiles. The system 
‘resolved relatively x-derivatives ’ (2.5) was solved numerically using the high-accuracy 
pseudo-spectral method for calculation of y-derivatives. 

The u, u, g profiles were approximated by the sums of Laguerre polynomials 
multiplied by exponents so that boundary conditions at y = 0 and as y+co were 
satisfied. The ui(x), g,(x), i = 1, N at the collocation points coinciding with zeros of the 
Laguerre polynomials were considered as unknown functions of x. If vectors ui, gi are 
known at some position x, the y-derivatives at the collocation points may be calculated 
by multiplying the differentiation matrix on these vectors. The equation for u is 
transformed after such a procedure to a linear system of algebraic equations for vi, 
i = 1,. . . , N .  This system is solved and the result substituted into the right-hand side of 
the equations for u, g. As a result, we obtain a nonlinear system of 2N ordinary 
differential equations for u,(x), g,(x) ‘resolved relatively x-derivatives’. Gear’s implicit 
method with automatic choice of x-step was used to solve the nonlinear system. 

Another, quite different, numerical method for solving (2.3) and (2.4) is described in 
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FIGURE 1. (a) The probe function &,(x, co) indicating the remoteness from the critical conditions and 
(b)  the axial velocity on the axis u(i ,O)  at CL = 0.5. Lines 1-5 correspond tog, = 1.14, 1.17, 1.18562, 
1.185624. 1.2. 

$4.1. Each approach was validated by comparison with the results obtained using one 
approach with those from the other. To control the numerical error the invariants C,, 
C, were calculated at each x-step. The finite results presented here were obtained with 
N =  64 polynomials. The relative changes of C,, C, were smaller than All 
programming was performed easily using tools of the spectral-methods TURLEN 
Mathematical Library (Blokhin et al. 1992). 

Equation (2.6) was used to determine the remoteness of the solution from a 
singularity or bifurcation. The Cauchy problem for this equation with initial condition 
q50(x, 0) = 0, and normalization &(x, 0) = 1 was solved at each x-step and &(x, co) was 
found. This, as noted above, must be zero at a point of singularity or bifurcation. The 
results of integrations for initial profiles at OL = 0.5 and g ,  = 1.14, 1.17, 1.18562, 
1.185624, 1.2 (curves 1, 2, 3, 4, 5, respectively) are shown in figures 1-3. 
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FIGURE 2. (a) The angular velocity of rotation near the axis and (b) the tangent of the maximum 
swirl angle at a = 0.5. Lines 1-5 correspond to the same values of g, as in figure 1. 

The variations of &(x, co) are presented in figure 1 (a ) :  at small values of g ,  it 
reaches a minimum and then gradually increases, approaching the asymptotic 
behaviour predicted by Batchelor (1964). The radius of the curve at the position of the 
minimum tends to zero as g ,  approaches the critical value g ,  = 1.185 624 so that curve 
3, obtained at a value of g ,  very close to the critical, seems to have a sharp bend. At 
the critical value of g ,  a bifurcation point appears from which two solutions originate. 
One of them belongs to the class approaching Batchelor’s limit. This is limiting for a 
singular solution of this class because the normal velocity, and derivatives &/ax, 
ag/i3x, have a finite break at the point of bifurcation. We were also able to obtain 
another solution which passes the bifurcation point regularly. The value of #i(.x, co) 
becomes negative, reaches a minimum and then passes the bifurcation point again 
regularly. This was a very unexpected finding and was checked carefully. 
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FIGURE 3. (a, b) The vortex thicknesses S,, &g, and (c )  the stagnation pressure parameter CT at 
a = 0.5. Lines 1-5 correspond to the same values of g, as in figure 1.  

An instability in the numerical results is manifested at some distance below the 
second bifurcation point - the results become dependent on the number of basic 
functions N and the precision of integration stated in Gear’s integrator. With the 
method used, we were not able to obtain reliable numerical results there. We shall 
return to this situation in $ 3  to investigate the solutions of the quasi-cylindrical 
approximation in the vicinity of the bifurcation point analytically and continue the 
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FIGURE 4. (a)  The probe function and (b)  the axial velocity on the axis at a = 1. Lines 1-6 
correspond to g ,  = 1.7, 1.73, 1.74444, 1.74445, 1.75, 1.8. 

solution numerically using another method. At values of g ,  higher than critical, a 
solution is singular, at some point x,(v - au/& - ag/dx - (x, - x)-'lz as x + xo) and 
cannot be continued beyond this point, as is demonstrated by curve 5. 

The variations of axial velocity on the axis are shown in figure 1 (b). Curves 1-3 have 
minima (the minimum appears as a sharp bend for curve 3 and then the velocity slowly 
increases. The velocity decreases monotonically in the unique solution 4. The velocity 
at the second bifurcation point, which is located at x = 0.09802, is u = 0.02736. The 
singular solution 5 cannot be continued beyond the point of singularity. 

The behaviour of the derivative g'(x, 0) on the axis is demonstrated in figure 2(a) .  
This derivative characterizes the angular velocity of rotation near the axis. In the class 
of solutions 1-3, its value decreases monotonically due to viscous dissipation. It 
decreases much quicker on the unique solution 4. Nevertheless, the maximum swirl 
angle 
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FIGURE 5. (u) The angular velocity of rotation near the axis and (b) the tangent of the maximum 
swirl angle at a = 1.0. Lines 1-6 correspond to the same values of g, as in figure 4. 

increases very strongly near the second point of bifurcation, as shown in figure 2(b). 
This is because not only u, but also i3u/i3y on the axis decrease. The variations of two 
vortex thicknesses 

6, = l:(l-u)dy and 8, = (g,-g)dy s: 
are represented on figures 3 (a) and 3 (b). The thicknesses increase monotonically for all 
solutions. 

Parameter cr = (ps td -pmd) / (&pd  uLd), where pstd is stagnation pressure on the axis 
and pmd is pressure in the free stream, plays an important role in considerations of 
vortex breakdown. We shall introduce the following definition concerning steady 
axisymmetrical forms of vortex breakdown in theoretical models. We shall call a vortex 
breakdown an ‘unbounded breakdown’ if fluid particles from the axis of the vortex 
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FIGURE 6. (u) The probe function and (b)  the velocity on the axis at CL = 1.5. Lines 1-5 
correspond tog, = 2.15, 2.2, 2.2135, 2.21353, 2.25. 

core penetrate the external potential flow infinitely far from the axis, i.e. the region of 
the reversed (or stagnated) flow is unbounded in the radial direction. In other cases we 
shall call it 'bounded'. The unbounded forms in inviscid fluid are possible only for 
cr 2 0. An example of a vortex breakdown model in which the stagnation region 
is semi-infinite and has the form of a paraboloid far from the critical point where 
cr = 0 was suggested by Trigub (19856). This model was extended recently by Vic. 
Sychev (1992), who took viscosity effects into consideration. 

The variations of 
CT = u'(x, 0) - (g2/2y2) dy low 

are shown in figure 3(c). We see that CT < 0 everywhere for all solutions considered. 
The results of integrations at a = 1 and g ,  = 1.7, 1.73, 1.74444, 1.74445, 1.75, and 

1.8 are shown on figures 4 and 5 (curves 1-6 respectively); and at CL = 1.5 and g, = 
2.15, 2.2, 2.2135, 2.21353, and 2.25 on figures 6 and 7 (curves 1-5 respectively). These 
results demonstrate that the behaviour of the solutions described above is not unique, 
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FIGURE 7 .  (a) The angular velocity of rotation near the axis and (b)  the tangent of the maximum 
swirl angle at a = 1.5. Lines 1-5 correspond to the same values of g, as in figure 6. 

but is similar for a wide class of velocity profiles from wake-like (a  = 0.5) to jet-like 
(a  = 1.5). 

The most interesting solutions are those close to the unique one passing the first 
bifurcation point regularly. Figures 8 (a) and 8 (b) represent the dependence of both g,, 
at which the bifurcations appear, and the position of the first bifurcation point xb on 
a. At an a of less than 0.4, xb coincides with x = 0. As we shall demonstrate in the next 
subsection, at smaller values of a the initial profiles correspond to a subcritical state. 
These situations are not discussed in the present paper. 
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FIGURE 8. (a)  The critical value of the circulation g,,, and (b) the position of the first bifurcation 
point x,,, versus a. 

2.3. Supercritical and subcritical states : connection with the bifurcations and 
singularities in the quasi-cylindrical approximation 

The classification of vortices into supercritical and subcritical for inviscid cylindrical 
flows was originally suggested by Benjamin (1962). It may be easily generalized to 
consider local properties of profiles in the quasi-cylindrical approximation. The 
classification is based on an analysis of small perturbations whose longitudinal scale is 
of the order of the vortex radius, which is much smaller than the longitudinal scale in 
the quasi-cylindrical approximation. Hence, the effects of viscosity are locally 
insignificant and the main flow is locally parallel in the limit t. + 0. 
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If small disturbances of the stream function are considered in the form 

the following eigenvalue problem will be obtained after taking the limit in the 
Navier-Stokes equations : 

1 C”+(--R,(u,g) Q2 $4 = 0, gs(0) = 0, $’(a) = 0. 
2Y 

(2.11 a-c) 

Benjamin (1962) suggested a classification for vortex flows confined in a tube. This may 
be generalized in the following way. We shall state boundary condition (2.1 1 c) at large, 
but finite distance y,: #‘(yB) = 0. 

With the assumptions about u, g made above, the problem has an infinite series of 
real eigenvalues Qt < 52; < 52;. . . . If Qg < 0 and therefore, if the standing waves can be 
maintained, the state with local u, g profiles is called ‘subcritical’, and ‘supercritical’ 
when Qi > 0. As the swirl increases, Q& Q y ,  etc. decrease and pass through zero, one 
after the other. The real eigenvalues Qi > 0 are condensed into a continuous spectrum 
Q2 > 0 as y e  +a. The corresponding eigenfunctions oscillate and slowly increase 
($’ - y-ll4 sin (Q(2y)l/’)) at y % 1 .  However, the eigenvalues 0; < 0 are slightly 
changed and have limits as y B  +oo ; the corresponding eigenfunctions decay 
exponentially. Therefore, the flow is ‘subcritical’ or ‘critical’ if (2.1 1 )  has solutions 
which decay exponentially as y +cc (possible only if Q’ < 0). The flow is ‘critical’ if the 
solution exists only at Q = 0. 

Comparing (2.11) and (2.6) we find that every consecutive appearance of a zero 
eigenvalue Q, as the swirl increases will led to a singularly (or bifurcation) in the quasi- 
cylindrical approximation. This means that the quasi-cylindrical approximation has a 
singularity or bifurcation only in the vicinity of u, g profiles capable of maintaining 
standing waves of infinite (on the scale of the vortex core radius) length. 

Eigenvalue problem (2.11) was solved numerically at each x-step during the solution 
of the problem (2.5). All initial profiles considered were supercritical. The critical state 
appears as g ,  increases at the first bifurcation point. Two solutions originate from this 
critical state : the limiting singular solution, which is supercritical everywhere, and the 
unique solution which is subcritical. An eigenvalue 0; < 0 appears when this solution 
passes the first bifurcation point along the separation line. This eigenvalue decreases 
monotonically and another mode Q y  < 0 appears after passing the second bifurcation 
point. Therefore, the solution is subcritical everywhere beyond the first bifurcation 
point with one standing wave above the second bifurcation and two waves below it. 
The solutions at larger values of g ,  are supercritical and become critical at singular 
points. These critical states cannot be continued beyond the singularity. 

For a subcritical state capable of maintaining standing waves with length comparable 
with the core radius, questions arise about the justification of the quasi-cylindrical 
approximation for such flows. We investigated this problem and found that the quasi- 
cylindrical approximation is also appropriate for the description of the average base 
flow in the presence of standing waves. 
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3. Study of the flow near bifurcation points in the solutions of the quasi- 
cylindrical approximation 

3.1. The governing equation describing the flow near a bifurcation point 
We shall study the structure of solutions near a bifurcation point. We introduce two 
small parameters: 6 = g,,,-g,, where g,,, is the value of g,  at which the bifurcation 
appears in the solution of the quasi-cylindrical approximation; and 8, the parameter, 
whose order will be determined below, such that 8 + 0  as 161 + O .  

It was shown that lav/axl tends to infinity as S+ 0 near the first bifurcation point for 
all solutions except the unique one passing the point regularly. The quasi-cylindrical 
approximation ceases to be valid in the vicinity of this point at small values of 6 and 
elliptical effects must be included. For this reason we intend that S is a function of e, 
&+O as 6-0, and consider the limit e+O in the full Navier-Stokes equations. 

We shall represent the disturbed solution near a bifurcation point in the form 

@d = ‘cod ‘&(@O(Y) + (3.1 a) 

ud = u,d(uO(Y) + 8u1(X, y )  + e2u2(X ,  y )  + o(e2)), (3.1 b)  

‘ d  ‘d = “ a d  rOd(v l (X ,  Y )  + e v 2 ( X ,  v) + o(e>), (3.1 c)  

W d  r d  = U m d  ro,(go(Y) + &,(X Y> + 82g2(x, Y )  + 0(O2)), (3.1 d )  

P d  = P d  uLd(pO(Y) + 8pl(X, Y )  + e2p2(X, Y> + ’(”)), (3.1 e )  

where @ is the stream function; X = (x- x b ) / 8 ;  xb is the position of a bifurcation point 
in a solution of the quasi-cylindrical approximation. 

The following procedure is similar to that suggested first by Leibovich (1970) and 
used by Randal & Leibovich (1973). The difference is that we study disturbances near 
the special critical state - the bifurcation point of the quasi-cylindrical approximation. 

We shall determine e2 /03  = O*(eo) including the elliptical effects in the second 
approximation. This supposition leads to the most general form of the final equations 
because in this case the nonlinear terms are comparable with the term containing the 
highest derivative of X .  In the first approximation we obtain the following problem: 

Y )  + e 2 @ 2 ( X ,  Y )  + o(e2)>), 

( 3 . 2 ~ )  

(3.2 d-f) 

The general solution of (3.2) is 

@I = X$,o(Y) + 4x1 $o(Y), (3.3) 
where A ( X )  is an arbitrary function, which will be determined by the condition of 
solvability of the second approximation; and c j 0  is the solution of the problem 

$o”-R,(uo,go)$o = 0, $ O ( O )  = 0, 4XW) = 0, (3.4 a-c) 

with normalization &(O) = 1. This solution exists because the uo, go profiles correspond 
to a critical state. The function r$zo(y) is a solution of the problem 

4;0-4(uo~gO)$20 = D,(uO>goL $20(0) = 0, $ ; o ( a >  = 0. (33a-c) 
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A solution of # J z o  exists because we consider that uo, go correspond to a bifurcation 
point and that the condition (2.7) is satisfied. 

In the first approximation, the vortex core produces a displacement in the external 

(3.6) 
potential flow: 

This displacement is taken into account in the boundary conditions for u2 as y+m. 
Using (3.6), (3.1) and (2.1) we find that as y+co 

vl(x a) = -#Jzo(oO)-A’(X)#Jo(co)+o(exp). 

(3.7b) 

2 
u,(X,y) =-#J (co) ln -+i ln2- i lny  A”(X)+iL(A”’(h),X) +o(l), (3.7,) 

0, O 

L(A”’(h),X) = J-aa A”’(,) In IX-hl sgn (X-h)dh. 

Taking the limit E + 0 in the Navier-Stokes equations we obtain a system of equations 
for the second approximation. The term 

1 1 
f a a  

[( : 

€3 1 av, 
032y Oax u -  _ _  

is preserved in the normal momentum equation because it is responsible for the 
elliptical effects. 

After substitution of (3.3) and simple manipulation, an equation for @, is obtained: 

(3.8,) 

+ 2xK(#J20) + 2AK($O) + D3(Y) $ O ( A  - x A ’ ( x ) ) 3  (3’8 b, 
where functions R,, D,, D, include only uo,go profiles and their derivatives; and K(#J) 
is a linear differential operator. These functions and the operator K(#J) are described in 
the Appendix. 

The condition of solvability of (3.8) with boundary conditions @2(X, 0) = 0, 
a@,/ay --f u2 as y +CQ is 

(3.9) 
lim (p#J#JodY-#Jos) au2 = 0. 
y+m 0 

We take advantage of arbitrariness in the definition of the parameter 0 and, seeking 
simplicity of the final equation, determine it so that 

(3.10) 

We then obtain from the solvability condition (3.9) the equation for the unknown 
function A(x) 

d 
dX 

sgn ( J ) - ( A ” + p L ( A ” ’ , X ) )  = 2 ( A A ’ + 2 q , A + q 2 X + P ( A - X A ’ ) ) ,  (3.11) 

where p = e2&( .o)/03 I JI ; and ql ,  q2, /3 are constants, which are completely determined 
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4; ’ 42 4; = q 2  4; < 42 

FIGURE 9. Seven possible structures of the solutions of (3.12) near a bifurcation point. 

if the uo,go profiles are known. The procedure for calculation of these constants is 
described in the Appendix. Equation (3.1 1) is composite, because p = O(l/ln (O le ) )  + 
0 as e+O, and the term with L should be discarded in the limit. Nevertheless, this term 
is included in (3.10) because the decline of p is very slow. 

3.2. Analysis of the bifurcation points in the quasi-cylindrical approximation 
The elliptical effects near a bifurcation point are represented by the terms on the left- 
hand side of (3.11). If 8 is much larger than that determined in (3. lo), a small parameter 
will appear in front of these terms. We shall omit them and analyse the equation 
describing the solutions of the quasi-cylindrical approximation near a bifurcation point 

AA’+ 2q, A + q2 X + P ( A  - XA’) = 0. (3.12) 

Exactly this equation would be obtained if we were to apply the procedure described 
above to the quasi-cylindrical approximation system instead of the Navier-Stokes 
equations. 

Equation (3.12) is closely connected with the equations describing the behaviour of 
a conservative two-dimensional dynamic system near a point of equilibrium. It is 
possible to introduce new independent variables t ,  A(& X(t )  and represent (3.12) as the 

The classification of solutions of this system is well-known and may be found in most 
books on differential equations (e.g. Arnold 1971). 

Equation (3.12) may be integrated after substitution of A = X A X ) ,  where f is a new 
unknown function. All solutions of (3.12) may be divided into three main and four 
degenerate classes. The behaviour of the integral lines A ( X )  is shown on figure 9. 

If q: > q2, then the equation A’ + 2q, A + q, = 0 has two different real solutions A,, A,, 
where A, > A,. If, in addition, P =i= A, and /3 =i= A,, the general solution of (3.12) is 

(3.13) [ A  - A ,  XI’1-P IA-A, XIP-’z = C, 
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where C 3 0 is an arbitrary constant. Two main solution classes appear in this 
case: saddle-point structure if v = (,8-A2)/(A,-,4) > 0, and nodal-point structure if 
v < 0. In the degenerate cases /I = all solutions consist of the general solution 
A = A2, X+ C, where C is an arbitrary constant, and a singular solution A = A,, , X .  

If q: < q2, then the equation A2+2q1 A + q ,  = 0 has two conjugate roots: ,Il,, = 

r*is. The general solution of (3.12) is 

(3.14) 

The lines determined by (3.14) may be represented in the plane ( c , , ~ ) ,  5 = sX, 
7 = A - r X  in a polar coordinate system $ = arctan (T/<) ,  p = (c+7'): as p = 
C exp ((p- r)  $/s). The integral curves have spirals forms which transform to ellipses 
at p = r. 

In the intermediate case q: = q2, A, = A, = A, the general solution may be represented 
as 

(3.15) 
X 

In IA - AX1 + (p- A) A-hX = C. 

This form may also be obtained from (3.13) or (3.14) in the limit A,+&. This is the 
degenerate nodal-point structure. In the case p = A the solution is A = AX+ C. 

We remember that only two conditions must be satisfied 

($;(a) = 0 and 1; D,  $,dy = 0) 

to realize one of these structures near the point X = 0. Which structure appears 
depends on the uo,go profiles. It is possible that some of the cases considered above 
should be discarded as unrealistic after investigation of the correlations between ql,  q, 
and p, using their explicit expressions in the Appendix. We did not study this 
interesting question. Instead we analysed which structures occur at the first and second 
bifurcation points observed in our numerical solutions. 

The evaluation of the constants q1,q2,p turned out to be a difficult numerical 
problem. There are three main sources of numerical inaccuracy. The first is that the 
integration of (2.5) close to a bifurcation point cannot be of high accuracy, because the 
matrix which is inverted to find ui is ill-conditioned there. An interpolation was used 
to obtain the profiles for which the condition $;(a) = 0 is satisfied accurately. The 
second is that the condition 

J;D,$,,dlY = 0 

must also be accurately observed at the same point. We strived for accurate values of 
g,,,, but were not able to reach very high accuracy. The third source of inaccuracy is 
related to the presence of high derivatives in the expressions for ql, q,, p. We 
transformed these expressions by integration by parts so that they included only first 
and second derivatives. 

In spite of this we did not reach the appropriate accuracy in the calculation of some 
parameters which have small absolute value near the points. Fortunately, these 
parameters being small does not change the main results and conclusions. 

The results of the calculations performed for the first bifurcation point at CL = 0.5, 
1, 1.5 are summarized in table 1. The value of A, is very small at all CL and we cannot 
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a x, d o )  U X O )  gX0) $;o(o) $ , ( ~ >  J P 4 4 V 

0.5 0.0105 0.413 0.686 0.958 -7.3 0.56 0.23 0.29 6.4 8.1 0 3.7 
1.0 0.115 0.482 0.504 0.782 -3.2 0.84 0.05 0.44 2.8 3.1 0.02 9.3 
1.5 0.305 0.496 0.334 0.635 -1.95 1.3 -0.31 0.69 1.7 1.9 0.03 8.4 

TABLE I .  Results of calculations performed for the first bifurcation point 

vouch for its precision. Nevertheless, the precision of v is quite appropriate. We see that 
the integral lines A ( X )  have the saddle-point structure near the first bifurcation point 
at all a considered. 

As X+ - co the asymptotic expansion of the solution is 

A = A,X+C(-X)++ .... (3.16) 

The value of the probe function &(X,  co) may be expressed using A :  

q5X-K w) = Q(A(X) -PX) ,  Q = JO/q5,(0, a). 

The solutions are divided into three groups depending on the value of the arbitrary 
constant C. 

At C > 0 the function q5h(X, co) is positive everywhere, reaching its minimum at the 
point 

(A, -A,) C(P-McAl-~,) pp- A, - A,l'/'"-") 
x, = & [(A, -p)cA,-P) (p- A 2 ) ( P - n * ) ] 2 / ( , 4 - ~ * )  ' 

where X ,  is positive if ,& > $(Al +A,) and negative in the opposite case, and approaches 
the line 

q5; = Q(Al-/3)X at X++co. 

If C = 0'4; = QV- A,) ( - X )  at X < 0 and can be continued in two ways at X > 0: 

At C < 0 any solution is terminated at the singular point 
as a regular solution q5; = Q(A, - ,!I) X or as a singular one q5; = Q(A, -,!I) X .  

- ( - C) (P-A2) / (A1-A2)  

[(A' - 4) (A1 - P)"1-PV - A,) P-A I/(+&) ' X ,  = 

where $h(X, co) - ( X ,  --A')'/', and cannot be continued beyond it. 
We see that the behaviour of the solutions is in agreement with previous numerical 

and analytical results. Now we can correlate the value of C in (3.16) with the value of 
r = g ,  -g, , ,  in the initial conditions. We shall represent the solution of the quasi- 
cylindrical approximation in the interval 0 < x < xb as 

$d = U,d r:d<$,<x, Y )  + d , < x ,  Y )  + . . (3.1 7 a) 

W d  rd = U,d roa(&(x, v) + @Ax, Y )  + . . (3.1 7 b) 

where $, (x ,y ) ,  g , ( x , y )  is the solution at g ,  = g,,,: passing point x = xb regularly. 
In the limit r + 0 we obtain the linearized quasi-cylindrical approximation system 

for the functions $,gl. The solution of this system in singular as x + x b  and it may be 
shown that 

$' = qx, - x)-1/" q5,(y) + . . . , 
, 1 
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f 

FIGURE 10. The integral lines near the second bifurcation point at a = 0.5. 

a x* UO(0) 4 ( 0 )  g;(o) 91m 9o(a) = J P 4 4 U 

0.5 0.098 0.0274 0.643 0.304 -2.68 -0.37 0.29 0.57 6.8 - -85 -13.5 
1.0 0.335 0.0331 0.374 0.259 -1.26 -0.35 -0.63 0.34 4.97 - -139 -29.0 
1.5 0.671 0.0342 0.240 0.211 -0.778 -0.46 -1.3 0.38 3.3 - -105 -32.8 

TABLE 2 .  Results of calculations performed for the second bifurcation point 

Matching the expansions (3.1) and (3.17) we find that C = (gm-gmcr)c//el+”. The 
constant C is contained in the boundary conditions of (3.1 1). Therefore, the flow near 
the first bifurcation point described by (3.1 1) is influenced by the deflection g, -g , , ,  

Calculations of q,, q2, and /l were also performed for the second bifurcation point. 
The results are presented in table 2. In this case A, is very small at all a and we were 
not able to ensure its precision; A, is small for the same reason as A, near the first point: 
q, 4 q;. This relationship was observed in all cases considered. It is quite possible that 
q2 = 0 at any bifurcation point, but we did not succeed in proving this. The integral 
lines have the nodal-point structure near the second bifurcation. 

We are able to study the behaviour of the integral lines in detail using (3.13). The 
picture of the integral curves off = Q& Q = - JO/$,( co) is schematically represented 
in figure 10. Two lines, f = (p-h,)X and f= (p-h,)X,  pass the central point 
regularly. All curves with initial conditions from the sector (p- A,) X <f< 0 at X < 
0 converge to the line f = (p- A,) X and pass the point (0,O) along this line. Then the 
curves spread from the line and fill the sector 0 < f < (P-A,)X at X >  0. The 
asymptotic expansion of the solutions near the line f = @-A,) X at X > 0 is 

at lgm-gmcrl = ,(@+’). 

f = ( J - A , ) X + c f x - ~ +  ...) A = h,X+c,X-”+ ...) (3.18a, b) 

where c f , c A  are arbitrary constants. The curves may be continued infinitely for 
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cf ,cA 3 0, but are terminated at singular points X, for cf,cA < 0. At these points 
&(X, co) - ( X s - X ) ” 2  and solution cannot be continued. 

The behaviour of the integral curves is in agreement with numerical results. The 
analysis explains why we were able to pass the point where &(x, 00) = 0 regularly and 
why the numerical solutions of (2.3) are not stable beyond this point. 

The problem of continuation of (2.5) for the quasi-cylindrical approximation with 
the initial conditions stated at the nodal point does not have a unique solution but, 
instead, an infinite one-parameter class of solutions controlled by the arbitrary 
constant cA.  The problem is not correct beyond the second bifurcation point and an 
additional downstream condition is required to provide the uniqueness of the solution. 
The parabolic equations of the quasi-cylindrical approximation allow the downstream 
disturbances to propagate upstream. 

A similar situation is known for the problem of the hypersonic boundary layer on 
a flat plate in the strong interaction regime. It was discovered by Neiland (1970) and 
extended by Brown, Stewartson & Williams (1975) that an eigenfunction cxk,f(7) 
(where x is the distance from the leading edge, 7 a self-similar variable, c an arbitrary 
constant, k > 1) appears in the asymptotic expansions of the solution near the leading 
edge, which is the singular point for the problem. The solution of the parabolic 
boundary-layer equations is not unique and one downstream condition for a scalar 
quantity must be added. Usually this condition is stated for the downstream pressure. 
It is possible to change the solution in the whole region from the leading edge to the 
last downstream position by changing the downstream pressure. Therefore, upstream 
propagation of the downstream disturbances exists. At present, quite effective numerical 
methods have been developed to solve these problems. 

However, there is a significant difference between the above problem and that 
considered in this paper. The problem for the hypersonic boundary layer always starts 
from the singular point at the leading edge and has the property of upstream 
propagation from the beginning. The present problem concerns the quasi-cylindrical 
approximation properties which change at the bifurcation point appearing in the 
process of integration. 

Another obstacle which complicates the present problem is that the second 
bifurcation point is located very close to the point with zero axial velocity on the axis. 
We know that this point is singular for the axisymmetric wake developing under an 
unfavourable external pressure gradient and the solution in general cases cannot be 
continued beyond it (Trigub 1986). The analysis of the quasi-cylindrical approximation 
solutions near the point with zero axial velocity is a much more difficult one. We have 
not reached a complete solution yet but we believe that the situation is similar to the 
one mentioned above. The appearance of the additional degree of freedom at the 
second bifurcation point changes the situation favourably. We hope to choose the 
arbitrary constant so that the solution will pass the point of zero axial velocity 
regularly and the solutions with reversed flows will be obtained just like in the problem 
of the hypersonic boundary layer. 

This hypothesis was confirmed by numerical calculations of the flow beyond the 
second bifurcation point. The appropriate numerical method to study the solution with 
the reversed flows and the results are described in the following section. 
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4. The solutions of the quasi-cylindrical approximation system with large 
reversed-flow regions 

4.1. Numerical method 
The numerical method was specially constructed to look for regular solutions with 
reversed-flow regions. We did not have proof that such solutions existed except for the 
general considerations mentioned above. The scales and space structure of the 
solutions were unknown. For these reasons the main requirement was not rapidity but 
high accuracy and ability to find any solutions, even very unstable ones. 

The coordinate transformation 7 = y/6(x) in the radial direction was performed and 
the quasi-cylindrical approximation problem was reformulated as follows : 

(4.1 a)  

(4.1 b, c) 

x o < x < x , ,  o < y < c o ,  (4.1 d )  
$(x, 0) = 0, If@, 011 < co, g(x,  0) = 0, (4.1 e) 

?w, a) = 6, f(x, a) = 0, g(x,  a) = g,, (4 .  I f  1 
$(% 7) = $0(7), g(x0, 7) = go(717 (4.1 g )  

where primes denote differentiation with respect to 7. Then the flow region was 
transformed into the standard domain 

- l < ( < l ,  o < z < a ,  (4.2a) 

(4.2 b, c) 

7 = C,Z+C,Z“. (4 .2d)  

The pseudo-spectral method was used to calculate x- and y-derivatives at the 
collocation points. The functions f and g were represented as the finite sums 

(4.3a) 

(4 .3b)  

(4.3 c )  

where Tm(g) = cos(rn arccos [) are the Chebyshev polynomials, B,(z) = e-z’2 Lm-l(z), 
Hn(z) = zB,(z), Ln are the Laguerre polynomials, and f m n ,  gm,& are unknown 
coefficients. 

The numerical solutionf,, =f(&, zj) ,  gii = g(&, z,) was calculated at the collocation 
points ti = cos (n(M-  i ) /M) ,  i = 0-M, and zjl j = 1-N, coinciding with zeros of the 
Laguerre polynomials: LN(zj) = 0. The x-derivatives at the collocation points were 
calculated identically for f and g :  

M (7 = ( = C. DXl, ,a , , ,  
ax i , j  ’(‘z i , j  1-0 

(4.4a) 

where a,$ isLi or gLi. 
(4.4 b)  
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The calculation of first and second 7-derivatives was different for f and g because of 
the special form of representation used for g which takes into account the boundary 
condition on the axis g(x, 0) = 0: 

(4 .54  

(4.5 b, c) 

(4.5d, e) 

The integral matrices were used to calculate the functions a+/ay and &)/ax. The 
integrals were represented as 

N N 

f(xi ,  7) d7 = c RFljkfik, dh S:f lx i ,  7 )  d7 = 2 R n j k f i k ,  s: k=l k=l 

and therefore 

(4.6a) 

(4.6b) 

(4.6 c) 

All matrixes DFljk,  oni,, DXlil ,  DGljk ,  DG2jk, RFl,,, R n i k  were calculated using 
standard procedures from the TURLEN Mathematical Library (Blokhin 1992). 

Taking into account the representation of the functions, derivatives and integrals, 
equations (4.1) may be written at the collocation points as a system of ( M +  1 )  x N 
nonlinear algebraic equations for unknown functions f i r ,  gij, i = 0-M, j = 1-N. The 
initial approximation of the solution was usually obtained by extrapolation of the 
region with smaller x, where the solution was known. Then the standard iterative 
solver based on the hybrid method of Powell (1970a, b)  from the TURLEN Library 
was used to solve the nonlinear algebraic system numerically. 

4.2. Numerical results 
The unresolved problem concerning the downstream boundary conditions which 
provide uniqueness of the solution still exists. It was proved that only one additional 
downstream boundary condition needs to be stated if the region contains the second 
bifurcation point and does not contain points with zero or reversed axial velocity. It 
is not clear what kind of boundary condition is required if the reversed-flow region is 
not closed and reversed axial velocities occur on the downstream boundary. 
Nevertheless, if an accurate numerical solution of (4. l), without any additional 
downstream conditions is obtained, we consider it as one of the possible solutions 
which correspond to those conditions downstream, which were settled in the iterative 
process. We are not concerned here with the question of the uniqueness. Instead, we 
search for some of the solutions numerically which include the reversed-flow regions. 
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The aim is to prove the existence of regular solutions with large reversed-flow regions 
and to find regularities among these solutions. 

Another general consideration is that singular solutions or solutions with very high 
gradients cannot be obtained by the numerical method used. Therefore, the numerical 
procedure acts as a filter which selects the solutions close to the continuation of the 
separation line f = ( P - h l ) X  in figure 10. The larger the distance x l - x b ,  the smaller 
is the value of cA to be chosen to avoid the singularity or high gradients. Extending the 
region x1 -xb ,  we obtain solutions in a narrower region near the continuation of the 
separating line and as a result this continuation may be found. 

The calculations were performed at CL = 0.5, because in this case the value of - u  
which characterizes the divergence of the integral lines is the smallest. The initial 
profiles at the upstream boundary x, = 0.1 were calculated using the numerical method 
described in $2. The transformation with 6(x) = 1 +4x2/(0.01 +x) turned out to be 
appropriate and was used in all calculations. The values c, = 0;  c, = 0.2 for N = 32 
and c, = 20/z, for N = 16; y = f ( x l - x 0 )  were chosen for the transformations (4.2). 

The calculations were performed using two sets of the basic functions: M = 16, 
N = 16 and M = 22, N = 32. The final results presented here were obtained with the 
second one. The integral invariants (2.8) were calculated at each xi and their relative 
error did not exceed 0.1 % for all final results. The initial approximation for the new 
region (xo, xi) was prepared from the solution previously calculated in the interval 
x,, < x < x, and its linear extrapolation at x, < x ,< xi. Primarily, we looked for a 
solution with a closed region of reversed flow. We were not able to obtain any such 
solution in spite of numerous attempts using different sequences of the initial 
approximations. 

The results for eight solutions obtained for x, = 0.1, x, = 0.3, 0.32, 0.35, 0.4, 0.45, 
0.55,0.8, and 1.0 are shown in figure 11. An important feature is that the solutions on 
the front portions of intervals have a weak sensitivity to changes of the downstream 
conditions. The solutions 1, 2, and 3 were obtained with additional downstream 
condition 

du 
dx 
- (x,, 0) = 0. 

An equation must be discarded in the nonlinear algebraic system and substituted by 
this additional condition. We discarded the equation for circulation at collocation 
point M = 1, N = 32. The axial velocity on the axis is represented in figure 11 (a) .  The 
downstream disturbances do not spread far upstream so that all solutions coincide at 
x, < x < 0.2. Therefore, the elimination of the equation at the collocation point M = 
1, N = 32 does not change the solution on the front part of the region and gives the 
opportunity of satisfying the additional condition downstream. 

The other solutions 4-8 were obtained without any additional downstream 
conditions. The axial velocity has, in the solutions 5-8, a minimum and then increases. 
It might be thought that the closed reversed flow region is formed. However, this 
conclusion is wrong as can be seen from figures 11 (b) and 11 (c) where the vortex 
thicknesses are shown. These functions increase monotonically. All curves are located 
in a narrow region and form, where they coincide, a curve, which we consider to be the 
continuation of the separation line, originating at the second bifurcation point. 

The numerical results demonstrate that the equations of the quasi-cylindrical 
approximation have regular solutions with large reversed-flow regions. In these 
solutions the axial velocity has a negative minimum inside the reversed-flow region and 
then increases, still being negative. The vortex radius increases too. On the basis of 

I t  F L M  214 
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FIGURE 11. (a)  Velocity on the axis, (b) vortex displacement thickness 8, and (c) vortex angular 
momentum thickness S,, for a set of solutions with reversed-flow regions at  a = 0.5. Solutions 1-8 
were obtained a t  x1 = 0.3, 0.32. 0.35, 0.4, 0.45, 0.55, 0.8, 1.0. The additional downstream condition 
c?u/c?x (x,,O) = 0 was set for solutions 1, 2, 3. 
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these observations we can suppose that unbounded vortex breakdown with a large 
almost stagnated region enveloped by the mixing layer may be realized far downstream. 
The small negative velocity inside the region is induced by the mixing-layer suction. 
Similar structures were found for boundary-layer separation in supersonic flow by 
Neiland (1971) and in incompressible fluid by Sychev (1972). We shall investigate this 
possible application of the quasi-cylindrical approximation. 

4.3. The asymptotic expansions of the solution with unbounded vortex breakdown far 
downstream 

We shall consider the reversed-flow region to be infinitely expanding as x +  + 00. 

Suppose that the flow inside the region stagnates as x -f + 00. The region is separated 
from the external potential flow by the mixing layer whose thickness is small compared 
with the distance from the axis to the zero streamline situated at y = A(x), A+co as 
x + m .  We shall introduce new variables 5, n to transfer the problem for the 
axisymmetric mixing layer to a form similar to that for the flat mixing layer 

x = I$, y = A(&)++. 

Then the equations of the quasi-cylindrical approximation are 
system 

(4.7a, b)  

transformed to the 

(4.8a) 

(4.8 b, c) 

(4.8d, e)  

It will be confirmed below that the asymptotic expansion of the solution in the mixing 
layer (n = O(1)) as 5 - f ~  is 

ll. = 42(51/2fo(7) +In t f l (7)  +fh) + O*(t-l/zN, (4.9 a) 

g = (go(7) + 5- In k I ( 7 )  + 5-'/"8,(7) + O*(5-')), (4.9b) 

(4.9 c-e) 

The following problems are obtained in the leading-order approximation : 

fl+ f ,  f: = 0, fo(0) = 0, f i (  + 00) = 1, fi( - co) = 0,  (4.10a-d) 

g;+fogo=o,  g , ( + m ) = g , ,  g , ( - .O)=O.  (4.lOe-g) 

The first problem coincides with that of a two-dimensional mixing layer and has 
the solution f i (0)  = 0.587, f ( -  00) = - a  = -0.876, 6 = lim,,,, (7-fo) = 0.374, and 
,fi - eav at 7 -f - a. The solution of the second problem is go = g ,  f i(7).  

The pressure at 7 = O(1) is found using these solutions: 

(4.11) 

The flow inside the region moves upstream from the stagnated state as x -+ + co under 

11-2 
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the action of the pressure variation (4.11). The viscous effects are negligible in the 
leading-order approximation. The flow is considered as potential, without circulation, 
far downstream and, hence, everywhere inside the region. Therefore, the axial velocity 
inside the region is expressed using Bernoulli's integral : 

p 2  

u = - ( 2 ( p ,  -p))"2 = -____ gm +:gm am+ O(A-"'). 
d2A1/ '  

The function u inside the region is obtained from the equation of continuity: 

The function V near the mixing layer is calculated from (4.12) and (4.13): 

(4.12) 

(4.13) 

(4.14) 

On the other hand, this function obtained from the solution of (4.10) as 7 + - co is 

(4.15) 

Matching (4.14) and (4.15) shows the correlations A = k ,  [ + . . . , k ,  = 4a2/gL. 
Performing the integration (4.7) we find a very unexpected result: 

A = k ,  exp (2k1(x - xo))  + . . . , 
where x, is an unknown constant of the integration. The reversed-flow region expands 
exponentially far downstream. 

We represent the expansion of A as x --f + co as 

A = k ,  [+ k ,  [liZ In [+ k ,  ( l iZ  + 0*( I), (4.16) 

where k ,  and k,  are unknown constants, and consequently 

A = k ,  e2ki(z-X0) - [2k, k,(x - xo) + 4k, + k,] ekl(x-zJ + . . . . 
The expansion of the axial velocity inside the region of the reversed flow (4.12) may be 
rewritten using (4.16) as 

This expression allows boundary conditions for the higher approximations in the 
mixing layer to be stated: 

f;" +fof; +fif; = 0, fl(0) = 0 f;( + CO) = 0, f;( - CO) = 0; (4.18 u-d) 

g;+fog;+f;gl = 0, g1(+m) = 0, g,(--) = 0. (4.1 9 e-g) 

The linear homogeneous problems (4.18) and (4.19) have the eigensolutions 

f l  = .If; + bl, g1 = g, elf:, 
where b,, el are arbitrary constants and a, = -bJf;(O). 
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We obtain the next approximation 

(4 .20~)  
1 K +fox +fX = 2 ( f X  -flf1) - 2/2 - (6 7 1 ' 2  

f,(O) = 0, f;(  + 00) = 0, f ; ( -  Go) = -~ 

k, 

(4.20 &d) gcc . 
2/2 kil' ' 

1 
(4.21 a) 

(4.21 b, c) 

The left-hand sides of (4.18), (4.19), (4.20) and (4.21) are the same. As a result, (4.20) 
and (4.21) have solutions only if the additional solvability conditions are satisfied. 
The logarithmic terms were specially included into expansions (4.9) to fulfil these 
conditions. 

s;+fog;+&g, = 2(f;g,-g;fl)- 2/2-78:, 
kl 

g,( + 00) = 0, g,( - 00) = 0. 

We find after integration of (4.20), from 7 = - co 

Evidently, the boundary conditionf;( + co) = 0 can be satisfied only if b, = g 3 4  4 2 .  
Then the solution of (4.20) is 

where c, is an arbitrary constant. The constant k, is determined as a result of matching 
in the second approximation : 

k, = -(2 U)? 

The expansions under consideration now contain four arbitrary constants : a,, c,, k, 
and xo. Additional information is obtained from calculation of the integral invariants 
C,, C,, (2.8). It may be shown that only terms included in expansions (4.9) and (4.17) 
participate in the calculation of the integrals (2.8) as [+co. Performing the integrations 
we obtain the following relationships: 

C, =&rL 3+---- k3 ( Ink, -2/2g2,(4-24), a 2/2a 
(4.22) 

(4.23) 
+m 

4 = ~ ~ , & ' o v  dv = -0.0815, J ,  = flofodq = -0.155, L 
J3 = ~ ~ f ~ g z 0 d 7  = -0.147. 

The integral invariants at a = 0.5, g, = 1.18563 are C, = 0.889 and C, = 0.686. The 
constant k, is determined from (4.22). However, two unknown coefficients of the 
eigenfunctions in the mixing layer, a, and c,, still remain in the expansions. 

The location of the region along the x-axis determined by the constant xo would be 
obtained from (4.23) if the value of (a ,  - c,) is known. We do not know whether these 
constants are determined uniquely from the solution of the quasi-cylindrical 
approximation if the initial profiles before the second bifurcation point are fixed. 
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Therefore, the question about uniqueness of the solution which has the asymptotic 
expansion obtained remains unresolved. 

In this section only the solutions of the quasi-cylindrical approximation are studied. 
The solutions expanding exponentially as x +oo are not correct asymptotic solutions 
of the Navier-Stokes equations. The displacement produced by the reversed-flow 
region vd rd - eumd rod d causes axial velocity perturbations ud - umd 24 In (1 / e )  in the 
external flow (2.1). The pressure variations induced by these perturbations become 
comparable with those induced by the external circulation at 

d - (c(ln(l/c))1'2)-1. 

Hence, the elliptical effects in the external flow must be taken into account at 
( x  - xo) - In (l/e). We consider these effects in the next section. 

5. The asymptotic theory of the unbounded vortex breakdown 
5.1. The scales and governing equation 

A diagram showing the different regions emerging in the limit e+O and their 
dimensional scales is shown in figure 12. The distinctive feature of this structure is that 
the initial quasi-cylindrical region I and region I11 where elliptical effects are important 
have comparable longitudinal scales. These regions are separated by the longer 
intermediate region I1 where the reversed flow expands exponentially in accordance 
with (4.16). The thickness of the mixing layer is constant in this region - an interesting 
fact caused by the strong spilling. We shall obtain these scales and derive the equation 
describing the flow in region 111. 

We represent the asymptotic expansions of the solution in the mixing layer as 
follows : 

xd = rod(So + S,  x*),  x *-I&. - (5.1 a, b)  

(5.1 e) 

where [*,n* are new independent variables and So, S,, S,, S,  are unknown scaling 
factors depending on E .  It is supposed that So + S,  2 S,  9 S, 2 1 as e + 0. The zero 
streamline is situated at n* = 0. 

The two-dimensional boundary-layer equations are obtained in the main ap- 
proximation after substitution of (5.1) into the Navier-Stokes equations in the limit 
c +  0, if the conditions 
are satisfied : s; = €S1S2, s, -g s,, s,s, < s,2 (5.2) 

au* 
u*,72*+ (5.3a, b)  

(5.3c, d )  

The solution of the equation is 
n* 

(5.4 a-d) 
1 

d 2  
u* =fA(r*), g* = g,f;(y*), v* = -(*-l'Z ( a * f ; - f o ) ,  a* = 0'12 

wheref, is the similarity solution of the mixing layer problem (4.10). 
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1 Lid ~ ";t. ~ Lld j 
111 

FIGURE 12. The scales and asymptotic structure of unbounded vortex breakdown. 

The solution inside the reversed-flow region may be represented as 

The inviscid thin-layer equations are obtained in the limit e+ 0 as 

if the condition 
€"s,2 < s, < s,2 

(5.6 a-c) 

(5.7) 

is observed. The solution of (5.6) may be represented as the Bernoulli integral 

$i+p* = B(W,  

where B is arbitrary function of the stream function ly. 

Therefore 
We consider the motion which originates from the stagnated flow far downstream. 

d 
u* = - P ( P ,  -P*(X*)lli2, U* = Y* dx" [2(P" -P*("*>)11'2, 

where p o  is the stagnation pressure. Using these expressions, we are able to calculate 
the function V* and match it with its value obtained from the solution in the mixing 
layer as ,q* +- a. As a result, the equation which correlates the pressure and the 
radius of the reversed-flow region is obtained: 
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where a = -fo( - co), and Sg12/S, = 0*( 1) is assumed. Equation (5.8) can be integrated 
using the relationship d[*/dx* = 24" : 

where q is the constant of integration. 
The displacement produced by the region in the external potential flow is 

v d r d  = umdrod(--+...). S ,  dA* 
S ,  dx* 

(5.10) 

This displacement causes the longitudinal velocity perturbations which may be 
calculated in the main approximation using (2.1). Then the pressure perturbations in 
the external flow near the upper boundary of the mixing layer are found from the 
Bernoulli equation : 

p*(x ) - --Inp 2s: d2A* g: '"[[I, d2A* 
A*p * - (kz S, )dx*' 4A* 2s: 

In Ix* - A1 sgn (x* - A) dh +- ("")'I. ~ (5.11) 
2A* dx 

We assume here that S,/S, = O*(l). The pressure does not change through the mixing 
layer in the main approximation. Hence, p*(x*)  = p*(x*)), and from (5.9) and (5.11) 
we obtain an equation correlating A* and [*. Recalling the previous correlation 
d[*/dx* = 2A*, we see that a closed system of two equations for A* and [* is 
obtained. 

4 2P 
In (2S12/S,)' g, g, 

-= Q A= c, f = 2 A ,  x = x * ,  [ =  [* (5.12d-i) 
1 

' 2  P =  

transforms the system into the following: 

d2f - 1 4 ([112+Q)2+c+p d2f'lnf+ -cmd3fln Ix-Al sgn 
[dx2 2 I-, dx3 

~ - --- 
dx2 f f 2  

d t  
- = J  
dx 

(5.1 3 a) 

(5.13b) 

Now we can be certain that the conditions (5.2) and (5.7) are satisfied. 
It requires some effort to get the real dimensional scales of the functions from (5.12), 

(5.1) and (5.5). in this case we reformulated the expansions (5.1) using (5.12) to make 
the scaling clear: 

(5.14a, 6 )  
(5.14 c) 

xd = LOd +Lid, x, ' d  = L 2 d , f  + L3d(2[/f 112 112 q * > 

ud = w,d,fi(?*) + ... > 

(5.14d) 



Asymptotic study of a wing-tip vortex 325 

The dimensional scales Lld, L,, and L,, used here do not contain the initial vortex 
radius rod:  

(5.15a, b) 

(5.15c, d )  

(5.1 5 e )  

where pod is dimensional stagnation pressure as x+ + 00. The parameter ,u is 
logarithmically small as e+O. Only limiting solutions at p = 0 are considered in this 
paper. 

The solution of (5.13) can be matched with the solution in the intermediate region 
I1 only if Q = 0. In this case the equations have a solution with asymptotic expansion 
f = 4 e g Z +  ... as x- t - -oo .  

After matching this solution with the expansion in the intermediate region we find 
that 

(5.16) 

The value of (T cannot be determined from the matching and is really an essential 
parameter of the problem. 

Note that (5.13) at p = 0 may be represented as the single differential equation 

(5.17) 

If the solution of (5.15) is known we can find the corresponding position xd, velocity 
ud and pressure pd inside the region from the following expressions : 

(5.18a, b) 

(5.18 c) 

5.2. Numerical results 
We studied the solution of (5.13) numerically at p = 0, Q = 0. It was convenient to 
solve the system (5.13) rather than the single equation (5.17). Integration of (5.13) with 
various initial conditions forf,f’, t given at some point x demonstrated that three types 
of solutions exist : monotonically increasing solutions for which f = a0-’x2 + . . . as 
x + + 00 ; solutions which are terminated at some singular point x = x*, 6 = t* + . . . , 
f = ( 1  85*)112 (x - x.J2/, + . . . as x -+ x* ; and, intermediate between these two, mon- 
otonically increasing solutions for whichf= 2 x / a +  ... as x+ + co. The third type is 
the most interesting since solutions of the first type increase too strongly and 
application of the slender-body potential theory (2.1) is questionable. The singular 
solutions could be considered using the slender-body theory everywhere, excluding the 
vicinity of the singular point, but then representation (2.1) must be modified. 
Therefore, we looked for monotonically increasing solutions for which the stagnation 
zone has a parabolic form only at a large distance from the point of breakdown 
( f -  2xl0-1. 
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FIGURE 13. The dependence of f”(0) on AO) for the boundary-value problem (increasing lines 1-6, 
F = 1,2, 3, 5,  10,20) and for the initial value problem (decreasing lines 1-7, r = 0.5, 1,2,3, 5, 10,20) 
at which the boundary conditions are satisfied. The points of intersection of the increasing and 
decreasing curves at the same a correspond to solutions of the total problem. 

The general representation of the solutions with exponential decay as x + - 00 is 

f = 4 e4(2-L”) + O(eS‘”-“o’ ) + exp (-A e-4(*-zJ) (c+  . . .), (5.19) 

where ,xo is an arbitrary translation and c is an arbitrary constant which determines the 
solution. In principle, all solutions may be obtained starting from x 4 - 1 and 
changing the constant c in (5.19). But, in practice, this procedure cannot be realized 
because the function in front of c decays too strongly as x+- co and all terms in the 
preceding set of exponents must be determined at c = O( 1). Therefore, we used another 
more reliable procedure to order the solutions. 

Since we were searching for monotonically increasing solutions and since the 
arbitrary translation of the solution in the x-direction is allowed, we supposed that 
[ = 1 at x = 0 without loss of generality. The boundary-value problem for (5.13) was 
solved at - cc < x < 0 andf(0) = f,, [(0) = 1, f + 0 as x --f - co at various values off,. 

The solution was represented as a set of Laguerre polynomials. The spectral 
collocation method and standard iterative solver from TURLEN Library were used. 
The dependence off’(0) on.f(O) obtained as a result for (T = 1,2, 3, 5 ,  10,20 are shown 
in figure 13 (the increasing curves 1-6 respectively). Then the initial value problem for 
(5.13) at variousf(O),f’(O), t (0)  = 1, x 2 0 was studied. The results are also presented 
in figure 13 (the decreasing curves 1-7 are for o = 0.5, 1, 2, 3, 5, 10, 20 respectively). 
Each curve divides the plane ( . f ( O ) , f ’ ( O ) )  into two parts. The initial conditions situated 
above the curve allow for the first type of solution ( f -  x2 as x+ + 00) and those below 
the curve result in the singular solution (second type). The initial conditions on the 
curve produce the solution of the third type ( f  - x as x + + co) which we are interested 
in. Therefore, each intersection of a decreasing curve with an increasing one (at the 
same o) indicates the existence of a third-type solution on the whole interval 
-cc < . x < + o o .  

Only one such solution was found for each (T from the interval 1 < (T < 20 
considered here. Some solutions for o = 2 are presented in figure 14(a). Solutions 1-6 
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FIGURE 14. The dependence of the radius of stagnation zone on x. (a) u = 2. The lines 1-6 correspond 
toA0) = 1, 1.1, 1.15, 1.20837, 1.25, 1.3. (b) As (a) but for r = 1. Lines 1-7 correspond toA0) = 1.5, 
1.6, 1.64, 1.712, 1.75, 1.8, 1.9. In (a) and (b) line 4 shows the solution which expands parabolically far 
downstream. 

were obtained forfT0) = 1, 1.1, 1.15, 1.20837, 1.25, 1.3 respectively. Solution 4 has the 
required asymptotic expansion f N x as x + + 00 and corresponds with the point of 
intersection of the curves. Another series of solutions obtained at G = 1 is demonstrated 
in figure 14(b). Curves 1-7 correspond tofTO) = 1.5, 1.6, 1.64, 1.712, 1.75, 1.8, 1.9 
respectively. Vortex breakdown with a parabolically extending stagnation zone is 
described by curve 4. 
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It can be seen that a region where the functionfincreases exponentially is followed 
by a region where the increase is much more intensive. The intermediate zone between 
these two regions becomes narrower as CT decreases (compare figures 14(a) and 14(b)). 
We were not able to obtain a reliable numerical solution of the boundary-value 
problem mentioned above at small values of CT andf(0) > 2. It may be supposed that 
under these conditions the solution which decays exponentially as x + - 00 ceases to 
exist and only solutions which originate from the singular point at some position are 
possible. This question requires further investigation. 

6. Marginal vortex breakdown or transcritical jump ? 
In this section we shall return to the results obtained in $3 and investigate the 

asymptotic solutions of the Navier-Stokes equations near the first bifurcation point. 
The solutions are described by equation (3.1 I), and only the limiting case ,u = 0 will be 
considered. 

If p = i(A,+A,), equation (3.1 I)  may be integrated and represented as 

A” = (A-A ,X) (A-A ,X) -C ,  (6.1) 

where C is an arbitrary constant. If the additional condition A, = - A ,  is observed, this 
equation may be transformed into the form for which the solutions were studied by 
Trigub (1987) concerning the origin of the recirculation zones in an axisymmetrical 
wake. However, we shall not consider these particular cases here but instead examine 
the solutions in a concrete situation, namely near the first bifurcation point at a = 0.5. 
All relevant data are represented in table 1. 

It was shown that (3.1 1) without the highest derivative A”’ describes a saddle-point 
structure of integral lines near the first bifurcation point. The lines of the velocity 
perturbation on the axis u ( X ,  0) = A ( X )  + &,(O) X corresponding to this structure at 
a = 0.5 are shown on figure 15. The asymptotic expansion of the solutions as X +  - 00 
is 

A ( X )  = A,X+C(-X)-””+ ..., v = (/3-h2)/(h*-/3), (6.2a, h) 

and solutions at C < 0 are terminated at singular points. More exactly, the solutions 
at C = 0, f0.5, k 1, 42, +4, +6, f 10, k 15 and their symmetrical counterparts are 
shown in figure 15. 

The elliptical effects included in (3.11) through the term A”‘ change the behaviour of 
the solutions drastically. A general asymptotic expansion of the solutions as X f - cc 
in this case is 

A ( X )  = A,X+C(-X)-””(l +...)+ C,(-()‘exp (-$(-[)‘””)(l+ ...) 

+ C,( - 5)‘ exp ($( - 6)’’’) (1 + . . .), (6.3 a)  
5 = (2(,&A,))1’3X, r = -($- l/2v). (6.3 b, c) 

The constant C, must equal zero for solutions approaching the separation line A = 

A, X .  Therefore, for each solution at fixed C an additional degree of freedom arises: the 
deviation of the solution from its quasi-cylindrical approximation which is controlled 
by constant C,. However, expansion (6.3) is unsuitable for numerical implementation 
because the deviation decays very fast as X + -  co and all terms of the preceding set 
must be determined to allow use of it. We used another numerical approach to study 
the effects of the deviation on the solutions. 

First, we fixed position X,, < 0 far enough from point X = 0 and solved the 
boundary-value problem for (3.11) with the following boundary conditions: A = 
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FIGURE 15. The lines of the velocity perturbation u(X,  0) near the first bifurcation point at 
a=0.5 ,  C=O,  f0.5, +1,  +2, +4, f 6 ,  + lo ,  f15. 

A, X+ C( - X)-””+. . . at X = XI, A = A, at X = X,. The deviation was determined 
by the value of A, .  The region X I  < X < X,,, where X, = - 10000 was chosen and 
transformed by algebraic transformation (4.2) into the interval (- 1 , l )  and Chebyshev 
polynomials were used to represent the solution. 

We do not describe the approach in detail because the procedure is quite similar to 
those discussed above. In this way we were able to obtain the solution of the boundary- 
value problem for fixed C and A,, and hence, Ah(X,) and A,”(X,). then the initial-value 
problem was solved : equation (3.11) was integrated at X > A’, with initial conditions 
A = A, ,  A’ = Ah, A” = A,” at X = X,. Three types of solutions were observed: the first 
type of solution tends to infinity ( A  + + co) very fast and cannot be continued far in 
the X-direction; the second type of solution oscillates strongly and, moreover, the 
frequency increases as A’+ + 00. This second type of solution may be continued far in 
the X-direction and u(X,  0) is negative when X is large enough. Therefore the second 
type penetrates the region of subcritical flow and may be recognized as transcritical 
transitions or transcritical jumps (when the transition is far from the smooth transition 
along the line A = A, X ) .  This class of solution is fairly wide and we did not find any 
obstacle to constructing solutions with sharper transitions and more intensive 
oscillations. As X++ 00 all these solutions tend (on average) to the separation line 
A = A, X. There is also a third type of solution, intermediate between those mentioned 
above. These solutions approach the regular branch A = A, X as X+ + 00. 

Some results of calculations obtained at C = - 5  are shown in figure 16(a). The 
regular branches A = A, X ,  A = A, X and a singular solution of the quasi-cylindrical 
approximation corresponding to C = -5  are also presented in the figure. Lines 1 and 
2 were obtained for certain deviations prescribed rather arbitrarily. Line 3 originates 
at X ,  = - 1.8 and has a negative minimum, approaches the branch A = A,  X smoothly, 
and then deviates from this line abruptly into the subcritical region and becomes 
oscillating. The line was obtained for a particular choice of A ,  which was found by 
‘shooting’. For A ,  exceeding this value by loplo, the line almost coincided with the 
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FIGURE 16. (a) Velocity perturbation u(X, 0) at C = - 5. The regular branches A = A, X ,  A = A2 Xand 
singular solution of the quasi-cylindrical approximation are also presented. Lines I and 2 correspond 
to solutions of the second type (transcritical). Line 3 is the solution which is close to the marginal 
vortex breakdown at X < 4. (b)  Velocity perturbation u(X, 0) at C = 5. Lines 1 and 2 correspond to 
the transcritical solutions. Line 3 is close to the solution of the third type at X < 7. 

previous one at X 5 4 and then increased suddenly so that A + + 03 (this solution is 
not presented in figure 19). It may be concluded that the solution of the third type 
approaching the line A = A, X as X - t  - 03 exists but cannot be produced at large X 
because of instability of the marching numerical procedure. 

Similar results for positive C = 5 are shown in figure 16(b). The most remarkable 
feature is that the solution of the third type almost coincides with the solution of the 
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quasi-cylindrical approximation, even at this moderate value of C. Therefore, we 
believe that at large values of C the elliptical effects do not play any role. 

It may be concluded that there are two ways in which the solutions at C < 0 which 
have a singularity and cannot be continued without elliptical effects can, instead, be 
continued if the following effects are included : transcritical transition when A + A, X 
as X++ GO (second type of solution) and marginal vortex breakdown ( A  + A, X as 
X +  + 00, third type). The transcritical transition is not unique - a one-parameter set of 
such solutions exists at each C. In this paper we do not consider which additional 
conditions must be stated to determine unique solutions. We think that it may be 
impossible to formulate physically justified conditions without taking into account the 
unsteady evolution of the disturbances. 

In contrast to this, the solution of the third type was found to be unique for each 
value of C. First, we attempted to obtain these solutions by ‘shooting’ starting from 
some position X,. However, this method turned out to be unreliable because of strong 
instability of the marching procedure. Therefore a more reliable method was developed. 
Two boundary-value problems were solved. The first was for the interval XI < X < 0, 
X, = - 10000, with boundary conditions A = A, X +  C( - X)-””+. . . at X = XI and 
A”(0) = A: for fixed C and various A:. The algebraic transformation (4.2) was adjusted 
so that half of the collocation points were situated in - 7 < X < 0. Finally, N = 120 
Chebyshev polynomials were used in the solution representation. As a result solutions 
in the interval XI < X < 0 were obtained and A,(O), Ah(0) at various A:. The second 
boundary-value problem was solved in the interval 0 d X < 100 with boundary 
conditions A(0)  = A,(O), A’(0) = Ah(0) obtained from the solution of the first problem 
and A”(100) = 0. The parameter of the algebraic transformation was determined so 
that half of the collocation points belonged to the interval 0 < X d 5, and N = 64 
Chebyshev polynomials were used. The value A”(0) = A; obtained from the solution 
can then be compared with initial value A,” stated in the first problem. We studied 
d(A;[) = Ai-A,” looking for zeros which indicate the solutions of the total problem. 
Using such an indirect method we hoped to find a non-unique solution. Nevertheless, 
only a unique solution was found at all values of C investigated. This result, however, 
cannot be considered as mathematical proof of its existence and uniqueness. 

A number of solutions are shown in figure 17. Lines 1-6 in figure 17(a) correspond 
to C = 7, 5, 1, 0, - 1, -5, -7 and line 8 is the solution of the quasi-cylindrical 
approximation at C = - 7. At positive C 2 5 the elliptical effects have a very small 
influence. At C = 0 the elliptical effects smooth out the sharp bend in the corresponding 
solution. At C < 0 the formation of a retardation zone is observed, and this retardation 
moves upstream and becomes more intensive as C decreases. The continuation of this 
process is shown in figure 17(b) where lines 1-5 correspond to C = -9, - 11, - 13, 
- 15, - 17, while line 6 is the quasi-cylindrical approximation at C = - 17. The first 
retardation zone is followed by a zone of acceleration and then the second retardation 
zone is formed. The results for C = - 19, -21, -23, -25, are shown in figure 17(c) 
by curves 1 4 .  At C = -25 the second retardation zone is followed by a distinctive 
zone of acceleration and the formation of the third retardation zone can be observed. 
We did not meet major obstacles in obtaining the solutions at C < - 25 except for some 
difficulties in the numerical calculations. Even at C = - 25 gradients near the first 
retardation zone are very high and the collocation points should be condensed there to 
obtain reliable numerical results at C < -25. 

The marginal vortex breakdown solutions are interesting because the flow is rather 
similar to the axisymmetrical forms of vortex breakdown observed in experiments 
(Harvey 1962; Sarpkaya 1971; Faler & Leibovich 1977). At finite Reynolds numbers, 
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FIGURE 17 (a-c). For caption see facing page. 
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profiles of velocity and circulation can be restored using the function A ( X )  at (3 .2) ,  
( 3 . 3 ) .  In this way profiles with reversed-flow regions will be obtained at C 4 - 1. We 
think that the limits of application of the asymptotic representation may be wide 
because viscosity effects are taken into account correctly. In any case, these limits could 
be found by comparing the asymptotic results with results of direct numerical solution 
of the Navier-Stokes equations for marginal vortex breakdown. 

The solutions for marginal vortex breakdown and for transcritical jumps presented 
above may be considered as different asymptotic representations of real axisymmetrical 
vortex breakdown. The following questions arise. Which one of these two 
representations corresponds to the vortex breakdown usually observed in experiments? 
What is vortex breakdown: transcritical transition or an odd ‘bridge’ connecting two 
smoothly developing supercritical portions of the vortex which in no way could be 
connected smoothly? 

7. Conclusions 
In this section, we shall critically review some results, present some speculations on 

possible forms of vortex breakdown, and outline some problems for future 
investigations. 

The aim of this work was to perform a consistent asymptotic study of steady 
axisymmetrical trailing vortices. This is, of course, a very strong idealization when 
considering real vortices. However, it is quite justified for a fundamental study since it 
allows us to find a coherent description of solutions in terms of the parameters, also 
revealing some singularities. The steady solutions may be used as the base flow in the 
study of linear stability, or as initial conditions in the study of unsteady nonlinear 
processes. 

Supercritical profiles from the class (2.11) were considered as initial profiles. A 
criticism concerning this point may be that the initial profiles were chosen too 
arbitrarily, and the results depend on the choice. However, a justification for this 
choice is that the experimental profiles may be correlated within this class and that the 
profiles were used in previous studies (Leibovich 1978). In addition, certain theoretical 
arguments exist in favour of this choice: the first terms of the expansions (2.9) are 
described within the class (2.1 1). However, we recognize the importance of investigating 
initial profiles created by various vortex generators. This problem of practical concern 
is far from being properly solved. 

Starting from the initial profiles, we attempted to find all the ways in which the flow 
could be continued infinitely downstream. Numerical investigations of the quasi- 
cylindrical approximation demonstrated that three kinds of solutions exist in a wide 
range of parameters : a regular supercritical branch which may be continued infinitely : 

(7.1) 

a singular supercritical branch, which is terminated by the singularity of the critical 
state; and an intermediate solution, which passes the bifurcation point regularly. 

One finding of this work is that the latter solution also passes the second bifurcation 
point regularly and forms an unbounded recirculation zone. The asymptotic analysis 

regular supercritical branch + asymptotic solution of Batchelor; 

FIGURE 17. Marginal vortex breakdown solutions. (a) Lines 1-7 correspond to C = 7,5, 1,0, - 1, - 5, 
-7.  Line 8 is the singular solution of the quasi-cylindrical approximation at C = -7. (b) Lines 1-5 
correspond to C = -9, - 11, - 13, - 15, - 17. Line 6 is the singular solution of the quasi-cylindrical 
approximation at C = - 17. ( c )  Lines 1 4  correspond to C = - 19, -21, -23, - 2 5 .  Line 5 is the 
singular solution of the quasi-cylindrical approximation at C = -25. 
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of the solutions near the first bifurcation point revealed a very important fact: the 
intermediate solution is not a unique one passing into the subcritical region. The 
regular and singular supercritical branches may also pass through the critical state 
forming a wave train and approaching the subcritical branch as the wave train is 
dissipated (56). Therefore, the following possibilities exist : 

regular supercritical branch 
singular supercritical branch 

wave train+ (7.2a) 

subcritical branch + unbounded vortex breakdown. (7.2b) 

The wave train is not uniquely determined; its intensity is a free parameter. It is quite 
possible that the intensity depends on the history and can be found only from 
examination of the unsteady process. On the other hand, it may be supposed that a 
unique choice of the intensity can also be made on the basis of the steady-state analysis 
by a thorough investigation of the wave train development downstream of the first 
bifurcation point. The problem has not been solved yet and new ideas are required. 

Another important finding of the work is the marginal vortex breakdown: 

singular supercritical branch + marginal vortex breakdown 

-f asymptotic solution of Batchelor. (7.3) 

This scheme seems very attractive because it is simple and deterministic. It was shown 
in 96 that the intensity of the intermediate wave is determined uniquely and a solution 
exists at all values of C within the examined range. However, we must warn here 
against general conclusions. The problem (3.11) was solved only for particular values 
of J ,  p, ql, q2 corresponding to CI = 0.5 and for -25 < C < 7. We cannot assure that 
the properties of the solutions will be the same in other conditions. Moreover, we have 
some reason to suppose that the properties may change drastically. It was shown by 
Trigub (1987) that the recirculation zones in the axisymmetric wake are described by 
equation (3.1 1) at J > 0, p = 0, A, = 1, A, = - 1. The solutions were thoroughly 
investigated in a wide range of C. It was found that two solutions exist at C > C* = 
- 1.46 and no solution at C < C*. One of the solutions corresponds to scheme (7.1), 
while another describes a solitary wave on the regular supercritical branch. The 
intensity of the wave increases and its length decreases as C+ + 00. The solutions at 
high C almost coincide everywhere except in the region where the solitary wave is 
located. Based on this finding, the solitary wave may be considered as a ‘trapped’ 
breakdown. The position and intensity of the ‘trapped’ wave are determined uniquely; 
however, its presence is not necessary. If a similar situation occurs for the vortex under 
certain conditions, it may be characterized by the scheme: 

regular supercritical branch + ‘ trapped ’ vortex breakdown 

+ asymptotic solution of Batchelor. (7.4) 

In conclusion, the corresponding problem for (3.1 1) requires further investigation. 
The equation proved to be quite general and it is worth a separate work in which its 
solutions are adequately classified and investigated in a wide range of parameters. 

For completeness, we should mention yet another scheme : 

regular supercritical branch + unbounded vortex breakdown. 

This scheme may be considered as a limiting case of (7.4) as the intensity of the trapped 
bubble increases infinitely. The problem was studied in detail by Trigub (1985h) and 

(7.5) 
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developed by Vic. Sychev (1992). The position of the breakdown almost corresponds 
to the point at which the total pressure on the axis is equal to the pressure in the 
external flow far from the vortex. The axial velocity drops to zero in the region with 
axial size comparable with the radius of the vortex, and a parabolic stagnated-flow 
zone is formed downstream of the region. 

We think that schemes (7.1k(7.5) present a wide foundation for subsequent stability 
investigations. Actually, each of the schemes will be terminated at some stage by 
transition to turbulence or by non-axisymmetrical vortex breakdown. It is also possible 
that some parts of the schemes are globally unstable and will be re-organized if 
disturbed. 

The most interesting candidate for stability analysis seems to be the flow (7.2). The 
axial velocity gradually decreases to zero and nonlinear effects are revealed at some 
stages for small perturbations. We suppose that the asymptotic description of non- 
axisymmetric forms of vortex breakdown may be discovered this way. One interesting 
issue is the possibility of resonant interaction between the wave train and the small 
non-axisymmetric disturbances. 

Another likely problem for the asymptotic approach is the generalization of the 
equations describing the flow near the bifurcation points derived in 53.1 to include 
unsteady effects. The resulting problem statement will be relatively simple and quite 
productive. 

We also feel that the results of the present work might be used to extract correct and 
interesting problem statements for direct numerical simulations. The direct numerical 
simulation of vortex breakdown seems a relatively simple and attractive problem 
because the phenomenon occurs at moderate Reynolds numbers and may be 
represented as large-eddy motion. However, conceptual difficulties exist concerning the 
choice and formulation of the problem statement. Asymptotic analysis is actually a 
tool for elaboration of the problem statements. 

Future studies in the directions outlined above would lead to a deeper understanding 
of complex phenomena in vortex dynamics which are currently inaccurately 
differentiated and are jointly referred to as ‘vortex breakdown’. 

We would like to thank INTECO for its support for this work. We would also like 
to express our special thanks to Carol McHugh for her assistance in preparing the 
paper for publishing. 

Appendix A 

functions R,, D,, D,, K included in (3.8) may be calculated as follows: 
Once the profiles uo(y),  go(y)  at the bifurcation point have been determined, the 
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where the prime denotes differentiation with respect to y .  The coefficients P, q,, q, in 
(3.1 1) are calculated by integration: 

q 2  J = Jp; R, &" A, dY + 2 1; K(420) $0 dY - 2 s' D, 4" dY, 

where functions q5n,q520 are the solutions to (3.4) and (3.5). 
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